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ON THE SINGULARITY IN THE ESTIMATION OF THE QUATERNION-OF-ROTATION

Itzhack Y. Bar-Itzhack’ and Jukic K. Thiencl?

ABSTRACT

It has been claimed in the archival literature that the
covariance matrix of a Kalman filter, which is designed
to estimate the quaternion-of-rotation, is necessarily rank
deficient because the normality constraint of the
quaternion produces dependence between the quaternion
elements. In reality, though, this phenomenon does not
occur. The covariance matrix is not singular, and the
filter is well behaved. Several simple examples are
presented that demonstrate the regularity of the
covariance matrix. First, a Kalman filter is designed to
estimate variables subject to a functional relationship.
Then the particular problem of quaternion estimation is
analyzed. It is shown that the discrepancy stems from the
fact that the functional relationship exists between the
elements of the quaternion but not between its estimated

elements.

I. INTRODUCTION

The quaternion-of-rotation is a four-element
parameterization of attitude, and since the quaternion is
normal, one element is redundant. This fact has brought
researchers [see €.g. Ref. 1] to the conclusion that when a
Kalman filter (KF) is used to estimate all four parameters
of the quaternion-of-rotation, the filter covariance matrix
is necessarily singular. The argument behind this
assertion is that the dependent variables cause
singularities. However, as will be shown in the ensuing
discussion, the assertion that the covariance matrix is
singular when all four elements of the quaternion are
estimated is not necessarily true, and if it happens to be
singular, it is not because of the quaternion normality.

We note that there are two principal approaches to
the application of an extended KF (EKF) to quaternion-
of-rotation estimation, namely, the multiplicative
approach that yields the multiplicative EKF (MEKF) and
the additive approach that yields the additive EKF
(AEKF). In the MEKF the difference between the
estimated and the true quaternion is defined as a
quaternion-of-rotation between the true coordinate
system, and the estimated coordinate system. In the
estimation process the components of this difference
quaternion are estimated, and are then used to update the

a-priori estimate of the full quaternion. Because the
difference itself is defined as a quaternion, this update is
performed through a quaternion multiplication [1, 2]

.hence the name multiplicative approach. Since this

difference is a quaternion, its length is unity and,
therefore, one of its components is a deterministic
function of the other three.

In the AEKF [3], the difference between the true and
estimated quaternions is defined as a simple subtraction
of one vector from the other. Using this approach the
difference is estimated and then the estimate is added to
the a-priori full quaternion estimate hence the name
additive approach. This vector difference does not
constitute a quaternion; therefore, its length is not
necessarily equal to unity. In fact, if the quaternion and
its estimate are close to one another, then surely the
difference quaternion is not of unit length. Naturally, the
unity constraint is not impossd on the elements of the
difference quaternion, which become part of the
estimated state vector. Therefore, the corresponding
covariance matrix is not inherently singular.

In this paper we show three realities. First we show
that even if there is a functional relationship between the
pue values of states, this relationship does not
necessarily exist between their estimares; therefore, the
filter-computed covariance matrix 1s not necessarily
singular. Second we show that even if such a relationship
is imposed on the estimates, the covariance is still not
necessarily singular, and, third, we show that these
claims hold, in particular, for the case of quaternion
estimation when the additive approach is employed.

We establish these realities in an evolutionary
manner. We start our presentation with a conceptual
example of estimating the vertices of a rotating square.
This example illustrates the first reality; namely, even if
there is a functional relationship between the frue values
of states there is not necessarily a relationship between
their estimates. Then we present a simple linear example
of estimating the position of the edges of a sliding rod.
Here we demonstrate numerically the same reality and
also the second reality; namely, even if a relationship is
imposed on the estimates, the covariance is still not
necessarily singular. To demonstrate that these realities
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exist when the quaternion is estimated, we start with 2
simple linear example of estimating the four elements of
a quaternion when the measurements are quaternion
measurements. We choose a static case where the body is
not rotating. This choice enables us to analytically prove
the first reality for this case. In the final example we treat
the classical case where the body rotates and the
measurements are vector measurements. For this case we
numerically demonstrate that both realities exist when
quaternions are estimated using the AEKF; namely, the
filter-computed covariance matrix is non-singular, and 1t
remains non-singular even when normality is imposed on
the filter estimates in a brut force manner. To explain the
results of the latter example we analyze the operation of
the ordinary EKF, which is actually an AEKF, and show
that the forced normalization of the estimated quaternion
has no bearing on the covariance matrix.

II. ESTIMATION OF SQUARE VERTICES

We start our presentation with a conceptual example
of estimating the vertices of a rotating square. This
example illustrates the fact that even if there is a
functional relationship between the correct values of
estimated states there is not necessarily a relationship
between their estimates. Consider the system described
in Fig. 1 where a square is placed on a disk that turns at
an angular velocity, ®. We obtain noisy measurements
of the vertices of the square and try to estimate the
location of these vertices on the disk. Suppose that our
initial estimate places the vertices at %, X5, X; and x,.

Fig. 1: Estimation of the vertices of a square

After the second measurement update, the estimates
move to points y,,Y,,y; and y, respectively and so
on. The estimates keep moving along the curved
trajectories until they reach an infinitesimal distance
from the vertices a,,a,,a; and a,. (Fig. 1 shows the
position of the square at the end of the estimation
process ) Because there is a relationship between the

2

locations of the vertices of a square, knowing the
location of three of them, say a,,a, anda,, we can find

a,, the fourth of them. This, however, does not mean

that if we know vy,,y, andy; we also know y,. As is

indeed shown in Fig. 1, y,,¥,,¥s, ¥4 do not form a
square. [n other words, the fact that we know that there is
a deterministic relationship between the four vertices of
the square does not mean there is also a deterministic
relationship between their estimates. Similarly, the fact
that there is a deterministic relationship between the four
elements qy,q;,q3 and q, of a quaternion does not
mean there is also a deterministic relationship between
their corresponding estimates §y,d;,43 and §,.
Moreover, if we use the normality constraint to compute
one element of the quaternion as a function of the other
three estimated elements, the result will not necessarily
be equal to the estimate of that element.

IT1. ESTIMATION OF THE EDGES OF A ROD

After having seen conceptually that there is no reason
to assume that an algebraic relationship that exists
between the states of a system is also carried to their
estimates, we move forward to numerically demonstrate
this fact and the assertion that even if the relationship is
imposed on the estimates, the filter covariance is still not
necessarily singular.

Consider the rod shown in Fig. 2. It shides along the
x-axis at a constant velocity V. The coordinates of its
edges are s, and s,, respectively. In order to describe

the equations of motion of the two edges in the state
space we define the following state variables

X; =5, (1.a)
X, = X, = V = const. (1.b)
X, =0 (l.c)
Xy =S4 (1.d)
X, =X, =V =const. (1.e)
X,=0 (1.9

L

Fig. 2: Moving rod

In matrix form these equations are
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1 70 1 0 0fx]

X7 0 0 0 0fx, (2.2)
= = a
dt| X3 0 0 0 1|xs

):f4 0 0 0 0 _X4

and in a discrete form they are

[ x, a0 01x
Xy _|O 10 01 X, 2.0)
X4 0 0 1 Aty x, '
Xl (0O 0 1 jIxe]g

is the time difference between the discrete
We assume that at the time

where At
time points t, and t.,.
point designated as zero, the rear end of the rod, s,
passed by the origin, 0, at the constant velocity, V.

Therefore the true initial state vector is

)

< < o

The measured quantities are the positions of s; and s,
on the x-axis. It is assumed that these measurements are
contaminated by zero mean white noise signals v, and

v, respectively, thus the measurement vector 1s

X, +v,
zm = (4)
X3+ Vs
Using the following data
L=2m; V=1m/sec; At=Isec; gy, =0y, =0.Im
%)

Egs. (1) through (4) are used to simulate the correct state
vector and the measurements. A linear Kalman filter
provides estimates of the state vector. To avoid the well-

known divergence phenomenon that occurs in unexcited

state vector dynamics [4], zero mean white process noise
is added to the dynamics equation in the filter only. A
covariance matrix, Q) is added to the time-propagated
filter covariance matrix. The matrix is a diagonal matrix
with the values

Qk=diag{10_] 107" 107! 10‘1} 6)

Qur estimate of the initial state is

0+39,
V+8,
L+,
V+34,

)

Xp =

where &; is 0.2, 8, is 0.1, 83 is -0.2, and &, is -0.1.
Accordingly, we set the initial covariance matrix to be
the following diagonal matrix

Py =diagl(3-022 3:01)2 (3:027 (3-0)7}(®)

The filter 15 run for 20 sec and in-spite of the following
dependence between the states x, and X,

©)

no singularity is observed in the filter covariance matrix.
This is evident by a simple inspection of Fig. 3 where the
behavior of the filter covariance matrix eigenvalues is
presented.

Xy =x;+L
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Fig. 3: Eigenvalues of the covariance matrix

It is not surprising that no singularity occurs in the
filter covariance matrix because the relationship between
x3 and x| is not imposed in the filter model. One may
speculate that imposing the relationship on the estimates
X3 and X; will cause the matrix to become singular. In
order to examine this proposition, we imposed the
distance constraint between the rod end-points by forcing
the new a-posteriori estimates of %, and x, tobe

%) () = 4[& () + K3 (+) - L] (10.2)
and

R3(+) =L% (5)+ Xy () + L] (10.b)

3
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(Note that as a result of this change, an additional error
term must be accounted for, since the state estimates are
altered. This term is included in the filter propagation
and update stages according to the discussion presented
in Sections VII and VIII) No singularity in the
covariance can be detected as shown in the eigenvalue
history in Fig. 4.

Eigenvalues of the Esiimation Error Covarance Mairix (. . >z )7 >= )3 >= 7.‘ )

fsec]
Fig. 4: Eigenvalues of the covariance matrix in the
constrained case.

IV. QUATERNION ESTIMATION WITH
QUATERNION MEASUREMENTS

Next in our evolutionary exposition of the
singularity issue we demonstrate the | lack of covariance
singularity when the guaternion is estimated. We start
with a simple linear example of estimating the four
elements of a quaternion when the measurements are
quaternion measurements. We choose a static case where
the body is not rotating. This choice enables us to prove
analytically that the filter-computed covariance matrix of
the non-normalized quaternion estimate for this case i3
not singular.

Consider a rigid satellite body, fixed in inertial space.
The system equations that describe this simple, static
case are

Qi = g5 (11.a)
qm.k =lqk+vk (llb)
where I is the fourth order identity matrix, and q,,y is a

measurement of the quaternion at time, t,. This system 1s
linear; therefore, the ordinary KF can be applied in
estimating q. Consequently a covariance analysis can be
carried out which is independent of the state or of its
estimate. Let us assume that

Py = o°1 (12.2)

The recurrence relations that describe the covariance
propagation are

Py (=)= Ay Pro (DAL +Quo (13.2)
Ky =P (HE[H P (Hy Ry 7 (130)
P ={I- K H P () (13.0)

example we choose

where A, =H,=[1. In this

Qu-1 =0. Let us consider a case where Ry =1l. Egs.
(13) become
P (=) =Py (+) (14.8)
K, =P, ([P (=) +r]! (14.b)
Pr(+)=[1-KyJPc(-) (14.0)

Using Eq. (14.2), Egs. (14.b) and (14.¢) can be written as

Ky = Py (D[P (5) 717 (14.d)

P (+) =[1- Ky [Py (+) (14.¢)
Since Py is 2 diagonal matrix, all the matrices in Egs.
(14) are diagonal. Therefore, we can write the last
equation for any of the elements of Py (+) in terms of the
same element in P,_;(+). Dropping the plus sign, we
obtain the following recurrence relation for any element
of Pp(+):

Py .
py = —+ (15.2)
Pk-1+T .
with
po =02 (15.b)

It is quite obvious that p, . which is an eigenvalue of
P, (+), is not zero and thus the covariance matrix of the

filter is not singular.

V. ESTIMATION OF A QUATERNION FROM
VECTOR MEASUREMENTS

In this final example we treat the classical case where
the body rotates and the measurements are vector
measurements, we numerically demonstrate that the
filter-computed covariance matrix is non-singular both
when we do and do not impose normality on the
estimated quaternion. First we present the simulation,
followed by the filter development.

V.1 Simulation

Without loss of generality, we consider a case where
the body rotates at the constant angular rate. Let the rate
vector in this simulation be

w=[01 02 03] radsec (16)
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The quaternion at time t,,, as 2 function of its value at

time t, is given by [3, p. 512]

Loy
Qs = €7 qx )
We assume that two vector measurements are obtained at

each time point, t,. They constantly point at two

celestial objects located 90° apart and are given in the
reference coordinates as

r=00 0] (18.2)
r,=[01 0] (18.6)

In body coordinates we simulate two corresponding
measured vectors as

by = D@k+0)1 T V1 (19.2)
by st = D@ks1)2 7 V2 (19.b)
where are uncorrelated, Gaussian white

sequences with covariance R each and [5, p. 414)

v, and v,

1
2(q;q93 ~9294) |
2(q293 +9194)

2(q192 +9394)
2 2 2 2
-gj +q3-43 + 92

a?-qi-q3+ai
2(q1q2 ~9394)
i 2(q,q3 +9284)

D(@y-1)=

(20)
In addition to bjxs and bajs the filter is also

furnished with r,, r,, @ andthe covariance matrix R.

V.2 Filter development

V.2.1 Dynamics
The filter dynamics equation is simply
R lQ(m)At .
Gy =¢? Gx @n

V.2.2 Measurements
The effective measurement equation for the AEKF is

developed as follows

Zyyl =Dk Bsr = D@yt )r = D(@at (DF + Viest

(22.a)
Zy4 = D(qx+1 (—) +dqy41 - D(Qy41 (=) + ¥k
(22.b)
; gD .
2101 = Dl () + —[—g(;ﬁ'—] 401t = D er (D + Vi
qkol
(22.0)
aD{(q)r
Zyy = _[_5(‘1)__] dqisr + Viel (2.9
T 3.0

Using Eq. (20) we obtain

(aF -} -a} +ad)n + 2182 + 239472 + 2Q1A3 ~ 22940
]

Dig)r = | 2(q:az ~a3ae)n +(-af +a? -a3 +q2)r; +2(2293 + 11447

2(qq3 + Iy + 2 - I, +(—qf - a3 2 493

9193 +9294)0 qqd3 ~ 414412 qi -93 1 Qs +q4m

(23)
where 1,, T, and 13 are the components of r. Define
[D(q)r
o = 20 24)
q fhul(")

then using Eq. (23) we obtain

T(qun + Gy +43h) AN+ G —q,T;)
Hyy = 2| (@0 ~Qim2 +9aTs) (qun +G2%; + QT3)
L(@an —qeT2 ~ qnh)  (Qen +93R2 —qyf)
(~q5h + Qe + Qi) (Qel ¥ 4312 —q;53}
(=QaT ~ Q72 +920) (-9;n + 4402 * %"3)“
(qn+an+ q;n)  (dn-am +qu0) JQM(_)
(25)
and Eq. (22.d) becomes

Zyey = Hea 4Gk + Vien (26)

The filter is propagated and also updated every

Naags-@ae) -af -aj+ai+ai ; 4
2 T 1-92%93%94 ), second. At every update pomt we have two effective

vector measurements, Zj x4} and Zp )4 The algorithm

is a standard EKF algorithm. We ran two cases, one
without normalization of the estimated quaternion and
one with normalization. Fig. 5 shows the attitude error
when normalization is not imposed on the estimated
quaternion, with an initial error of 10 degrees. Fig. 6
shows the covariance matrix eigenvalues, with the scale
reduced to show the steady-state behavior. Fig. 7 shows
the deviation from unity of the norm of the estimated
quaternion. Figs. 8 and 9 present the results for the case
where normalization is imposed on the estimated
quaternion. Note that the eigenvalues do not change as a
result of the quaternion normalization. (See Sections VII
and VIII for a discussion on the changes to the EKF
algorithm as a result of the normalization.)
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Fig. 5: Attitude error
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Fig. 9: Covariance matrix eigenvalues.

VL THE FULLY RESET ADDITIVE EKF

To explain the results obtained in the preceding
examples, without the imposed constraints, we need to
analyze the operation of the AEKEF, and for that we need
to review the EKF algorithm. We do it in a manner that is
somewhat different from the usual textbook algorithm
development, but the resultant algorithm is the standard
EKF. (We need to adopt this approach for the
development that will be presented in the following
section.) Here we treat the special case that is applicable
to quaternion estimation, where the measurement model
is nonlinear, but the dynamics model that describes the
state propagation is linear.

VI.1 Measurement Update

A measurement vector y, , at time t,, is related to
the state vector X, , at time t,, according to the
following nonlinear vector function

Yk =hXy)+ vy @n
where V, is a zero mean white noise vector. Suppose
that at this time point we have an a-priori estimate,
5(k (-), of this state vector. We wish to use the
measurement yy to improve this a-priori estimate. The
improved estimate is called the a-posteriori estimate and
is denoted by X, (+). The KF was developed for linear

measurements whereas the measurement equation, Eq.
(27), is nonlinear. However, as will be shown in the
ensuing discussion, the EKF estimates the difference, e,

Berween the true state vector, X, and its estimate, X,
and the model treated by the EKF is, to first order, a
linear model in €.
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We recall that the state update equation in the linear
KF1s

)A(k('*'):)zk () + K[y, %] {28.2)
where
§Yk = Hki(k(—) (28b)
which results from the linear model
v = Hi X + vy (28.c)

In EKF terminology the term y, -V, is known as the
effective measurement, which we denote by z, ; thatis
(29)

Iy =¥x ~ ¥k

& (+) = ey (=) + Kyzy (37)

Substitution of Eq. (36) into Eq. (37) yields

e (+) = e (=) - Ky Hyep (2) - Kyvy (3%)
which can be written as
e (+) =[1-KyHyle (=) - Ky vy (39)

Assuming (the knowingly inaccurate assumption) that
the filter is unbiased; that is, E{e) (+)} =0, the updated
estimation ertor covariance is computed as follows

_ T
Using Eq. (27) we can write the effective measurement P (+) = Efex (+)ei (+)} (40)
as follows. Substitut £ 39y al -
z, = h(Xy) + vy 1 30) u smutm]% q. (39) along with the fact that
Efey (—)vi } =0, and the following notations
Note that ¥, , in Eq. (28.b), was obtained from the linear Ry = E{vivi} (41)
measurement equation (28.c) by dropping the noise
uaton Lo > Py (=) = Eey ()ei () (42)
vector and substituting X, (=) for Xy . If we do the
) Eq. (40) becomes
same in Eq. (27) then Eq. (30) becomes
. P (+)=[1-K H, P (O[-KH T+ KR KL (43
2y = h(Xy) + Vi - (K () G1) k «Hi P () Hi KRRy )
X
As mentioned before, we denote by e the difference A
between the true and estimated state vector; that is,
e=X-X (32)
Because X = X +e, we can expand h(Xy) in a Taylor x
series about X, drop the second and higher order terms | o=
in e, and substitute the result into Eq. (31). This yields
z, as a linear function of e. The first order expansion of
h(X,) about X, (-) yields .
. Bh(X) &+ X () F X )
hX ) =hX(N+— . &) (33 & % .k
X Ix=%,(-) - 1 (.
%0 .
and substitution of the last equation into Eq. (31) gives .
tk-— t)( Time
Sh(X
Zy = B(X) () +vy (34)
X=X, () Fig. 10: The state, its estimate, the difference and its
Let estimate at time t, .
_oh(X) 15
KT7TaX o e (33) The sequence of events associated with the
, X=X, measurement update in the EKF is presented in Fig. 10
then Eq. (34) can be written as and can be summarized as follows:
zy = Hyey (=) + vk (36)

1. Xk_1(+) is propagated from time t,_, to time point

Following the measurement-update equation of the state t, to become )‘(k(_).

vector in Eq. (28.a) we write
2. The difference Xy —5(k(—) 15 e, {-).

7
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3. The measurement update yields &y (+), an estimate of

ek(—).

4. &, (+) is added to X, (=) to form X, (+) which is
then propagated to time point t,,, to become
5{k +1(=) . We call this operation full reset. Note that

once &, (=) is absorbed in 5(k (+) it is not propagated
separately.

Once &, (+) is added to 5(k (=) a full reset is performed,
and there is no &,(+) to be propagated forward;
therefore, &,(-), the a priori estimate of e at the next

time update point, is also zero.

Using the preceding explanation, the EKF algorithm
at the measurement update can be summarized as
follows.

At a measurement update:

Signal:
e (-)=0 (44 a)
8 (+) =& () + Ky (¥ —Fk) (44.b)
Xy ()= Xy () + & (+) (44.0)

Note that a sequential substitution of Egs. (44.3, b, ¢)
yields the following textbook expression for the state
measurement-update equation

X () =X +K - ¥ (44.d)

Covariance:
P, (+) = [1- K, Hi I (O[T K Hy I

- (45)
+ K Ry Ky

In the next section we will use the formulation of the state

measurement-update given in Egs. (44.a-c) to show the

effect that normalization has on the state measurement-

update algorithm. This cannot pe shown when the

textbook expression of Eq. (44.d) is used.

V[.2 Time Propagation

Consider the case where the discrete process
equation that describes the time propagation of a general
state vector is given by

X, = A X ¥ Wi (46)
From Eq. (32) and as illustrated in Fig. 10
Xy = K (D) + e (+) (47.3)
and
X, =X (=) +e (=) (47.b)

8

Substituting Xy given in Egs. (47) into Eq. (46) yields
i(k () +e(-)= Ak-xik—l () + Ay ($) + Wi (58)

Since the dynamics model of (21) is lincar [6,p.75}

Xy ()= ARk (+) (59)
Subtracting the last equation from Eg. (48) yields
e (-)= Agoiex-1(F) + Wiy (50)

Using these results we can now examine the time
propagation of the state estimate and the covariance

matrix in this particular EKF. Assuming E{e, (-)}=0,
the propagated covariance matrix is defined as

Py (-) = Efey (Dey ()} (s1)
Substitution of ey (), given in Eq. (50), into the last
that e, (+)
and using

and
uncorrelated, the
Q= E{wk_lwl_l} we obtain the well known result [6,
p.76]

expression,  given w,_, are

notation

P(-)=AkciPra (DAR1 + Q. (5D)

Using Egs. (49) and (52) we can summarize the time
propagation stage of the EKF when the dynamics model
is linear.

Time update:
Signal:
Xg ()= A1 Xy (+) (53)
Covariance:
T
Pr(-)= Ag Pt (DA 1 + Qi (54)
We realize from the preceding development that the
AEKF that is used to estimate the quaternion when no
normalization takes place is the ordinary EKF algorithm.
Moreover, it is obvious that the fact that the true
quaternion is a normal vector has no bearing on the filter
covariance matrix. This is, of course, also true for all the
linear examples presented before.

VII. THE PARTIALLY RESET ADDITIVE
EXTENDED KALMAN FILTER
To explain the results obtained in the numerical
examples, when constraints were imposed, we need to
consider a special version of the EKF. For this we will
make use of the developments presented in the previous
section.

VI1.1 Time Propagation
Figure 11.2 describes the steps of the ordinary (fully
reset) EKF at the measurement update stage as described
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in the preceding section and illustrated in Fig. 10. We
have shown that after computing € (+), the estimate of
ey, it is added to Xk(—) to form 5(k(+) which is then
propagated to time point ty ., to become 5(k+](—).
Since &(+) in its entirety is added to X (+), this
operation constitutes a full reset. Because e(+) is

propagated forward as a part of Xk(+), it is not
propagated independently. Suppose now that only a part
of &.(+), denoted in Fig. 11.b by Ay, is added to

S(k (-) to form 5(;(+) which is then propagated to time
point t,,, to become )A{kH (-) . This partial reset leaves
é;(+) out of the propagated full state vector. Therefore
é;((+) has to be propagated forward separately. It is easy

to show that when the dynamics model is linear, &y (+)
is propagated according to

&1 () = A+ (55.2)
Reducing the index by 1 yields
& ()= A () (55.b)

X
A
X
t, ., Ty Time

(2) The fully reset case

We note in Fig. 11.b that the partial reset, does not
change the value of the actual estimation error, e, (+),
therefore the partial reset does not influence the
covariance matrix because the latter is the covariance
matrix of e, the estimation error itself.

The AEKF algorithm for the time propagation stage
in this partially reset case is then as follows.

At a time update

Signal:
X, =A% () (56.2)
()= Ak-lé;q () (56.b)
Covariance:
P, (=)= APy (HAL +Qy, (57)

VI1.2 Measurement Update

From the preceding discussion of the partial reset
operation and the developments presented in Section VI,
it is obvious that the measurement update is performed as
follows.

Measurement update
Signal:

e () =& () + Ky (yi - Vi) (58.a)

X
A

ty
(b) The partially reset case

Time

Fig. 11: Fully versus partially reset case
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Xy () =X () + & (4) (58.b)

Covariance:
P, (+) = 1=K H IR (DT - K H, )

(59)
+K R K]

VIL3 Reset Update

Although the change from )A(x(+) to 5(;(+), shown
in Fig. 11.b, can be of any nature, because we are
dealing with the normalization operation, we chose the
particular change

X+ = X, #/|%, (60.2)

It is clear from Fig. 17.b that once X|(+) is defined, the
value of g, (+) is also defined as

&(+) =X, (H)-X (+) (60.b)

Note that the condition of partially reset state vector
does not come about by adding A to Xy (-) but

rather by subtracting &, (+) from the fully reset state

vector Xk (+). As explained before, the partial reset

operation does not influence the covariance matrix;
therefore, the reset update is performed as follows.

Reset update

Signal:
X, () =X, /X, ) (61.2)
& (1) =X, (+)-X,(+) (61.b)
Covariance:
P (+) = Pe(+) (62)

Both the fully and partially reset AEKF are summarized
in Table I.

VIII. THE REGULARITY OF THE AEKF FOR
QUATERNION ESTIMATION
After presenting some illustrative examples and
having prepared the theoretical background we can now
analyze the results of the examples. We start with
quaternion  estimation using the AEKF without
normalization of the estimated quaternion.

Quaternion estimation without normalization

We presented two cases of quaternion estimation;
namely, a static case with quaternion measurements and
a dynamic case with vector measurements. The former
constituted a strictly linear estimation problem that
required the use of a standard KF. In the standard KF
there is no connection between the quaternion estimate
and the filter covariance matrix. Therefore, theoretically,
the normality quality of the true quaternion had no

Table I: AEKF with Full and Partial Reset

Svstem Model:

Dynamics: Xy =AX o + Wy

Measurement: y; =h(X )+ vy

AEKF with Linear
Dynamics and Full Reset

AEKEF with Linear Dynamics
and Partial Reset

Time Propagation:

Time Propagation:

Xk (=)= Ak—lk;—l (+)
&y ()= Ayora (+)
P10 = Ay Pea(+)
Ag_l + Q-

X, () =A%, (+)
P (5) = A P (+)
A—}E—-l + Qk—l

Measurement Update:

Measurement Update:

Consequently:

ey (+) = Ky (yx —¥i)
X () =X, () +&,(+)

ék (+) = ék (_)
+ Kk (yk - 5];( )
Xi(+) = Xy () + &, (+)

Consequently:

X, (+)=X,(-)

+K (v, -¥,) X () =X, (~)+&,(-)
P (+)=[I-K,H, P () +K, (v, -¥,)
I-KH]T Py (+) = [I- Ky Hy Py ()
+K, R KT [1-KyHJ"
+ K R K]

Reset Update:
X =% /Xl

&) =X, (+)-X.(+)
P, (+)=P,(+)

bearing on the covariance matrix. Indeed for this
example we derived an analytic expression that exhibited
no singularity.

In the more complicated case with a rotating body
and vector measurements, the dynamics equation is linear
but the measurement equation is nonlinear. In that case
we used the AEKF and still found no singularity. The fact
that the true quaternion is normal does not enter into the
computation of the covariance matrix. The only special
feature of this case is the orthogonality of the transition
matrix that propagates q, which preserves the norm of the
propagated state vector be it normal or not.

Quaternion estimation with normalization
Forcing normalization on the a-posteriori estimate of
the quaternion does not affect the covariance matrix. The
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partially reset operation is performed as follows. First,
the quaternion is updated as

M OETMORTNC (63)

where e (+) is the estimate of the difference

qy ~ qx (=) Now, the forced normalization yields

q;m as follows

¥ q (+
4y () = (64)
lax &l
According to (61.b), the remaining error term is given as
¥ N q. (+
=y (0 - (69)
lax ()]

This is a realization of the partially reset case of the
AEKF depicted in Fig. (11.b) and listed on the right
column of Table I. We note that the only difference
between the partially reset AEKF and the fully reset
AEKF (which, as mentioned, is actually the ordinary

EKF) is in the propagation of )A(k (+), which here is

4, (+), and of é; (+) . (There are cases where in practice
the filter performs well even when & (+) is not
propagated. It is assumed that the reason for it is that

é; (+), which is caused by the normalization operation,

is quite small and/or the measurement update subdues
any divergence tendency.) Since the partially reset
operation has no effect on the covariance matrix
computation, the normalization operation has no effect
on the covariance of the AEKF. With or without
normalization, we obtain the same nonsingular
covariance matrix, P.

IX. CONCLUSIONS

The purpose of this paper is to explain that using an
AEKF for estimating the quaternion-of-rotation does not
result in a singular covariance matrix. We started this
paper by presenting 2 conceptual example of estimating
the vertices of a rotating square where, in spite of the
geometric connection that exists between three of the
vertices and the fourth one, there is no reason to assume
that such a connection exists between estimates of the
vertices. This constituted an analogy to the case ‘of
estimating the quaternion-of-rotation where there is no
reason to assume that there is a functional relationship
between the estimates of the quaternion elements
although there is a connection between the elements of
the true quaternion.

Advancing from the qualitative example to a
quantitative one, wWe presented a KF that estimated the

11

position of the edges of a sliding rod the length of which
was constant. In that example we checked the singularity
of the covariance matrix both when the constant length
between the estimated edges was not forced and when we
did force it. In both cases the covariance matrix exhibited
no singularity. Moreover, the matrix eigenvalues were
identical in both cases.

Following these general examples we moved to the
case of quaternion estimation. We started with a particular
case of a quaternion estimation problem of a rigid body
with constant attitude and quaternion measurements. In
this simple example where normalization was not forced
we proved analytically that the covariance matrix is not
singular. Finally we presented a case with a rotating rigid
body and vector measurements. Again, the computed
covariance matrix exhibited no singularity.

In order to explain the results obtained in these
examples we presented the ordinary EKF algorithm as a
full reset estimation problem and, in parallel, we
presented an EKF version as a partial reset estimation
problem. It was shown that in either algorithm no
inherent covariance matrix singularity is involved.
Finally it was shown that the AEKF for estimating the
quaternion with no forced normalization is an EKF with
full reset, and when normalization is forced, the
algorithm is an EKF with partial reset, and as mentioned,
in either case there is no inherent singularity in the
covariance matrix. Indeed, in numerous runs of the
AEKEF under diverse conditions, with simulated and real
data, with and without normalization, the covanance
matrix was never singular.
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